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1. Problem, Solution & Customer 

Our group has identified a gap in the market for customized orthopedic solutions between the 

choice of prefabricated, cheap, but sub-optimally fitted orthotics from pharmaceutical scanners 

& kits, and expensive, slow-to-obtain, better fitting options gotten from specialists. In searching 

for potential applications for our new type of sensor - the Deformation Displacement Array 

sensor – we found a way to improve on the process of taking data for patients’ orthopedic needs 

by taking dynamic geometric data of their weight pressure profiles, in addition to their pressure 

distributions when standing. Additionally, our device possesses the ability to generate usable 3D 

geometry in the form of STL files – which are 3D printable and can allow for rapid 

manufacturing of orthotic components on faster timescales than in-office specialists (Hours to 

days, compared to days or weeks.) 

The Deformation-Displacement Array (DDA) Sensor aims to provide an innovative 

solution for digitally capturing and analyzing 3D shapes of deformable objects. Using an array of 

pins equipped with sensors, the DDA sensor measures the displacement of each pin when 

subjected to external forces. By combining the DDA sensor with the LIDAR 3D scanner app 

available on iPhones, this project enhances object profiling by leveraging both precise local 

displacement data and external geometry mapping. This combined approach enables the creation 

of a comprehensive digital map of an object's external 3D surface in real time. Traditional 

methods of capturing object profiles rely primarily on 3D scanning or external imaging devices, 

which are often limited in their ability to capture intricate surface deformations. In contrast, the 

DDA sensor’s approach provides an advanced solution for accurately mapping the complex 

geometries of deformable objects' external surfaces in real time. 

There are two main “customers” for our solution: the patients themselves with foot or 

walking problems which necessitate orthopedic help, and the doctors & pharmacists trying to 

connect patients with solutions. Our device, upon deployment in the real world, would ideally be 

a component of a kiosk with a footprint inside pharmacies; this is akin to Dr. Scholls machines 

already common across the US, which dispense prefabricated orthotics. Alternatively, having 

brick & mortar locations to allow customers to visit key cities and have their data taken could 

also work. An ideal patient would have an immediate need for orthopedic assistance, i.e. a 



   
 

   
 

maternity patient experiencing foot problems from rapid weight gain, but no severe or unusual 

medical complications, and preferably an endorsement from their doctor. They may also have 

financial constraints which the cheap & rapid construction of orthotics that our sensor facilitates 

could help with.  

There are other non-medical customers which our sensor may be able to serve too as a 

piece of lab equipment, though our primary exploration in this class was orthopedics focused. 

Other scientific applications are less brainstormed as of now, while the medical applications are 

apparent & potentially lucrative. 

Target Users for the Sensor 

• Pharmacy employees (Orthotic fitting) 

• Medical professionals (Prosthetic fitting) 

• Disabled individuals (Controllers and interaction devices) 

• Scientists (For mapping of internal structure of deformable bodies) 

Current Market Solutions and Limitations 

1. Traditional 3D Scanners 

a. High cost ($5,000+) [1] 

b. Limited real-time capability [2] 

c. Poor performance with deformable surfaces [3] 

2. Vision-based Systems 

a. Affected by lighting conditions [4] 

b. Cannot capture occluded surfaces [5] 

c. Limited accuracy for small deformations [6] 

3. Contact-based Measurement Tools 

a. Time-consuming manual operation [7] 

b. Limited measurement points [8] 

c. No real-time data processing [9] 

2. Project Goals and Deliverables 

2.1 Software Subsystem 

As we prepared our prototype for operation, we realized that the data collected solely from the 

prototype was unusable due to the limited number of pins on the sensors. This led us to pivot 

towards creating a more visual proof of concept. We realized that the DDA sensor alone was not 

sustainable as a standalone product but would work better as part of a larger assembly. To 

address this, we used extensive modeling software, including Houdini, MATLAB, and Python, 



   
 

   
 

to map displacement metrics and create visualizations. This approach also helped illustrate how a 

larger pin array could function. 

Figure 2.1 Deformation metrics of a simulated stuffed animal on a DDA array                             
Displacement                                                                                                                                          Pressure

 

This plot differs from the previously submitted one because it simulates the real prototype and 

focuses on integrating it with the assembly. The data used to form the mesh enclosing the point 

cloud in Figure 2.2 was sourced from the iPhone 3D scanner. Since MATLAB couldn’t directly 

connect to the scanner data, only one face of custom objects was used for the MATLAB plots. 

Despite this limitation, MATLAB's visual and computational efficiency proved more useful for 

the project compared to Python. 



   
 

   
 

Figure 2.2 Minute deformation comparison for a foam eraser from the IS2 Lab 

 

 

Due to the sheer intensity of some of the DDA sensor array designs visually, Matlab was chosen 

to the best medium to perform FEA Analysis. The displacement, Pressure gradient, von mises 

stress, strain and contact areas were plotted in Matlab using sample data. Matlab’s advanced 

visualization and analytical tools provided the precision and clarity needed to effectively interpret 

these metrics 

Figure 2.3 FEA Analysis of a sample tire placed on top of a DDA array 



   
 

   
 

  

As displayed in class, we also met up with VFX studio professor Phil Vanderhyden who helped 

us incorporate a stunning visual of a detailed DDA array as shown in our presentation. Initially, 

we faced challenges in visualizing the data due to its sheer size. Additionally, we encountered 

licensing limitations with the Houdini software, restricting our ability to fully utilize its features. 

Despite these hurdles, the expertise of Prof Vanderhyden helped us overcome these obstacles, 

resulting in a compelling and visually engaging depiction of our concept. 

2.2 Hardware Subsystem 

Figure 2.4 The Pin Array of the DDA Sensor Prototype, 3D-Printed & Assembled 

 



   
 

   
 

Our hardware subsystem – originally the primary focus of our efforts in this project, is an 

array of 16 (Originally 18, but downsized due to hardware constraints) pins in a lattice. The pins 

are connected to linear displacement sensors, in this case potentiometers, which are connected to 

a microcontroller visible on the bottom shelf of the housing. The pins are mounted on top of 

compression springs to facilitate linear displacement resistance. The analog voltage outputs of 

the potentiometers are connected to a microcontroller, which is outfitted with SD-card writing 

capability to log spatial data and transfer it to a computer for further processing. 

The springs are off-the-shelf components, as well as the structural components of the 

housing such as nuts, bolts, etc. All off-the-shelf components have costs below 3$ per unit, 

though summed together their costs approached roughly 40$. Most of the load-bearing housing 

& paneling is machined or 3D-Printed using our group’s own resources, making them free save 

for time & labor to produce the parts. These items include the face and base plates, pistons, and 

feet. Additionally, our microcontroller & SD-card-writer are components from Italian 

prototyping company Arduino, which cost about 40$ new, but our group members owned these 

circuit boards already. 

The hardware prototype, while capable of transmitting data and taking deformation 

readings, was ultimately little more than a showpiece demonstrating that the sensor is technically 

possible; this was even already proven – we have not invented a novel type of displacement 

detection, and placing sensors in an array is a design choice, but not an innovation in and of 

itself. Plus, an array of only 16 usable data points is not to scale of any real-life prototype, which 

would likely house hundreds if not thousands of displacement pins of “resolution.” The 

constructed prototype is, at least, roughly the size of an ideal final device, even if the pin 

resolution is poor, so it remains useful for visual communication.  

Figure 2.5 The Microcontroller, and the SD-card writer attached to its top surface 

 

3. Technology Readiness Level (TRL) 

• Starting TRL: 1 (Experimental proof of concept) 



   
 

   
 

• Target TRL: 3 (Technology validated in relevant environment) 

• Key Advancement: Implementation of integrated hardware-software system 

4. Gantt Chart 

Figure 4.1 Gantt Chart for the DDA Sensor 

 

The important takeaway from the Gantt chart is our pivot towards the end. As we realized that 

gluing together the hardware and constant testing won’t help forming a proof of working concept 

for the project since the data being used would be minimal and not useful for any analysis. 

Hence, we switched to a pure digital approach to extend proof of working idea as the semester 

comes to a close.  

5. Endpoint & Deviations 

The goals of the DDA sensor evolved significantly from its original concept. The shift to 

a more digital/CGI form of simulation enhanced the proof of concept. The project evolved from 

trying to be squeezed into a product to finding a long-term use case as a component sensor. 

Using Matlab, the need for the iPhone 3d scanner was also taken out, giving more detailed 

images in one axis, sacrificing the 3d capabilities of the original plots. Our priorities shifted 

heavily over time from simply trying to prove the technical viability of the sensor, and then 

trying to shoehorn it into as many solutions as we could identify, to more carefully considering 

its role on broader human-oriented ecosystems to solve problems and help as many people as 

possible. 

6. Lessons Learned 



   
 

   
 

Through the course of the project, the team learned several key lessons: 

• Balancing Priorities: The team learned the importance of prioritizing quality data and 

analysis over rapid physical prototyping. Software simulation often provides superior 

insights. 

• Problem-Solving capabilities: Hardware limitations inspired creative solutions, such as 

integrating iPhone 3d scanning and leveraging simulations to validate concepts. 

• Refining Market Fit: Collaborations and consultations helped refine the focus from a 

working product to an orthopedic solution while uncovering additional market potential. 

• Adaptability: The ability to pivot and integrate feedback into project development was 

crucial in achieving a robust, multifunctional endpoint. 

7. Future Work 

Towards the end of our project’s lifetime, it took on a very collaborative nature as we 

undertook professional consultations and began speaking with doctors about field applications 

for our device. The institution which took the most interest was the University of Pittsburgh 

Medical Center, of which a resident doctor expressed willingness to assist in bringing our sensor 

into an orthopedic solution ecosystem on-market.  

To facilitate this cooperation and bring the idea to fruition, we intend to file for 

intellectual property rights, most likely a design patent, to protect our technical advantage from 

other competitors in the space who might also specialize in pharmaceutical footprint solutions, or 

direct home delivery kits, like Dr Scholls or Corefit Orthotics. Additionally, we may need to 

pursue FDA approval and likely undergo lots of revisions and clinical testing before receiving 

the rubber stamp to allow public interaction with our device. 

We may require significant upfront investment from both RPI and UPMC financially, 

and the timeline to bring this product to market may take many years, but the benefits seem 

lucrative and broadly applicable enough to both ourselves and our consulting specialists, that the 

effort is likely worth it. The project as it exists now does not resemble the result we originally 

envisioned, but we are proud of our work, and wish to see it through to help in the real world. 
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8. Code Appendix 

8.1 SensorFEA.m 

function main() 
% List of available test cases 
testCases = {'cylinder', 'hemisphere', 'finger', 'gripper', ... 
'foot', 'stuffed_animal', 'tire', 'pen', 'phone', ... 
'keyboard_key', 'tennis_ball'}; 
% Run analysis for each test case 
for i = 1:length(testCases) 
fprintf('\n\nRunning analysis for test case %d/%d: %s\n', ... 
i, length(testCases), upper(testCases{i})); 

https://truescan3d.com/pros-and-cons-of-3d-scanning-in-architecture-and-construction/


   
 

   
 

fprintf('=========================================\n'); 
analyzeSensorDeformation(testCases{i}); 
pause(1); % Pause to allow viewing of results 
end 
end 
function analyzeSensorDeformation(objectType) 
if nargin < 1 
objectType = 'cylinder'; 
end 
% Sensor array properties 
sensorSpacing = 0.005; 
arraySize = [50, 50]; 
sensorStiffness = 1000; 
% Create position matrices 
[X, Y] = meshgrid(linspace(-0.125, 0.125, arraySize(1)), ... 
linspace(-0.125, 0.125, arraySize(2))); 
% Get object parameters 
objectParams = getObjectParameters(objectType); 
% Calculate responses 
[displacements, forces, pressures] = calculateResponse(X, Y, objectType, 

objectParams, sensorStiffness); 
% Calculate additional metrics 
[vonMises, strainEnergy, pressureGrad] = calculateMetrics(X, Y, displacements, 

pressures, objectParams); 
% Visualize results 
plotResults(X, Y, displacements, forces, pressures, vonMises, strainEnergy, 

pressureGrad, objectType, objectParams); 
end 
function params = getObjectParameters(objectType) 
% Base material properties 
steel = struct('E', 200e9, 'nu', 0.3); 
rubber = struct('E', 2e6, 'nu', 0.49); 
plastic = struct('E', 2e9, 'nu', 0.35); 
soft_tissue = struct('E', 15e6, 'nu', 0.45); 
plush = struct('E', 1e5, 'nu', 0.45); 
switch lower(objectType) 
case 'cylinder' 
params = struct('radius', 0.05, 'mass', 2.0, 'maxDisp', 0.01, ... 
'E', steel.E, 'nu', steel.nu, 'shape', 'cylinder'); 
case 'hemisphere' 
params = struct('radius', 0.04, 'mass', 1.5, 'maxDisp', 0.015, ... 
'E', rubber.E, 'nu', rubber.nu, 'shape', 'sphere'); 
case 'finger' 
params = struct('width', 0.02, 'length', 0.04, 'mass', 0.5, ... 
'maxDisp', 0.008, 'E', soft_tissue.E, 'nu', soft_tissue.nu, ... 
'shape', 'elliptical'); 
case 'gripper' 



   
 

   
 

params = struct('width', 0.03, 'length', 0.06, 'mass', 1.0, ... 
'maxDisp', 0.012, 'E', rubber.E, 'nu', rubber.nu, ... 
'shape', 'rectangular'); 
case 'foot' 
params = struct('width', 0.08, 'length', 0.25, 'mass', 25.0, ... 
'maxDisp', 0.020, 'E', soft_tissue.E, 'nu', soft_tissue.nu, ... 
'shape', 'foot'); 
case 'stuffed_animal' 
params = struct('radius', 0.06, 'mass', 0.3, 'maxDisp', 0.025, ... 
'E', plush.E, 'nu', plush.nu, 'shape', 'soft_sphere'); 
case 'tire' 
params = struct('width', 0.05, 'radius', 0.1, 'mass', 5.0, ... 
'maxDisp', 0.018, 'E', rubber.E, 'nu', rubber.nu, ... 
'shape', 'tire'); 
case 'pen' 
params = struct('width', 0.008, 'length', 0.12, 'mass', 0.02, ... 
'maxDisp', 0.005, 'E', plastic.E, 'nu', plastic.nu, ... 
'shape', 'cylinder'); 
case 'phone' 
params = struct('width', 0.07, 'length', 0.15, 'mass', 0.2, ... 
'maxDisp', 0.006, 'E', plastic.E, 'nu', plastic.nu, ... 
'shape', 'rectangular'); 
case 'keyboard_key' 
params = struct('width', 0.015, 'length', 0.015, 'mass', 0.005, ... 
'maxDisp', 0.004, 'E', plastic.E, 'nu', plastic.nu, ... 
'shape', 'square'); 
case 'tennis_ball' 
params = struct('radius', 0.033, 'mass', 0.057, 'maxDisp', 0.010, ... 
'E', rubber.E, 'nu', rubber.nu, 'shape', 'sphere'); 
end 
end 
function [displacements, forces, pressures] = calculateResponse(X, Y, objectType, 

params, k) 
displacements = zeros(size(X)); 
R = sqrt(X.^2 + Y.^2); 
switch params.shape 
case 'cylinder' 
edge_region = 0.8 * params.radius; 
core = R <= edge_region; 
displacements(core) = params.maxDisp; 
transition = R > edge_region & R <= params.radius; 
displacements(transition) = params.maxDisp * ... 
cos(pi/2 * (R(transition) - edge_region)/(params.radius - edge_region)); 
case 'sphere' 
contact = R <= params.radius; 
displacements(contact) = params.maxDisp * ... 
sqrt(1 - (R(contact)/params.radius).^2); 



   
 

   
 

case 'soft_sphere' 
contact = R <= params.radius; 
displacements(contact) = params.maxDisp * ... 
(1 - (R(contact)/params.radius).^4); 
case {'elliptical', 'foot'} 
X_norm = X/params.length; 
Y_norm = Y/params.width; 
R_ellip = sqrt(X_norm.^2 + Y_norm.^2); 
contact = R_ellip <= 1; 
displacements(contact) = params.maxDisp * ... 
(1 - R_ellip(contact).^2).^1.5; 
case {'rectangular', 'square'} 
X_norm = abs(X/params.length); 
Y_norm = abs(Y/params.width); 
inside = (X_norm <= 0.5) & (Y_norm <= 0.5); 
edge_dist = sqrt(min(0, 0.5 - X_norm).^2 + min(0, 0.5 - Y_norm).^2); 
displacements(inside) = params.maxDisp * ... 
(1 - 2*edge_dist(inside)).^2; 
case 'tire' 
R_norm = R/params.radius; 
ring = R_norm >= 0.8 & R_norm <= 1.2; 
displacements(ring) = params.maxDisp * ... 
cos(pi * (R_norm(ring) - 1)).^2; 
end 
forces = k * displacements; 
element_area = (X(1,2) - X(1,1)) * (Y(2,1) - Y(1,1)); 
pressures = forces / element_area; 
end 
function [vonMises, strainEnergy, pressureGrad] = calculateMetrics(X, Y, 

displacements, pressures, params) 
% Calculate strains 
[dx, dy] = gradient(displacements, X(1,2)-X(1,1), Y(2,1)-Y(1,1)); 
% Calculate stresses 
sigma_xx = params.E/(1-params.nu^2) * (dx + params.nu*dy); 
sigma_yy = params.E/(1-params.nu^2) * (dy + params.nu*dx); 
tau_xy = params.E/(2*(1+params.nu)) * (dx + dy); 
% von Mises stress 
vonMises = sqrt(sigma_xx.^2 + sigma_yy.^2 - sigma_xx.*sigma_yy + 3*tau_xy.^2); 
% Strain energy density 
strainEnergy = 0.5 * (sigma_xx.*dx + sigma_yy.*dy + tau_xy.*(dx+dy)); 
% Pressure gradient 
[px, py] = gradient(pressures, X(1,2)-X(1,1), Y(2,1)-Y(1,1)); 
pressureGrad = sqrt(px.^2 + py.^2); 
end 
function plotResults(X, Y, displacements, forces, pressures, vonMises, strainEnergy, 

pressureGrad, objectType, params) 
figure('Position', [50 50 1500 900]); 



   
 

   
 

% Plot displacement field 
subplot(3,2,1) 
surf(X*1000, Y*1000, -displacements*1000); 
title(sprintf('Displacement Field - %s', objectType)); 
xlabel('X (mm)'); ylabel('Y (mm)'); zlabel('Displacement (mm)'); 
colorbar; view(45, 30); lighting gouraud; camlight; 
% Plot pressure distribution 
subplot(3,2,2) 
surf(X*1000, Y*1000, -pressures/1e6); 
title(sprintf('Pressure Distribution - %s', objectType)); 
xlabel('X (mm)'); ylabel('Y (mm)'); zlabel('Pressure (MPa)'); 
colorbar; view(45, 30); lighting gouraud; camlight; 
% Plot von Mises stress 
subplot(3,2,3) 
surf(X*1000, Y*1000, -vonMises/1e6); 
title('von Mises Stress'); 
xlabel('X (mm)'); ylabel('Y (mm)'); zlabel('Stress (MPa)'); 
colorbar; view(45, 30); lighting gouraud; camlight; 
% Plot strain energy density 
subplot(3,2,4) 
surf(X*1000, Y*1000, -strainEnergy/1e3); 
title('Strain Energy Density'); 
xlabel('X (mm)'); ylabel('Y (mm)'); zlabel('Energy Density (kJ/m³)'); 
colorbar; view(45, 30); lighting gouraud; camlight; 
% Plot pressure gradient 
subplot(3,2,5) 
surf(X*1000, Y*1000, -pressureGrad/1e9); 
title('Pressure Gradient'); 
xlabel('X (mm)'); ylabel('Y (mm)'); zlabel('Gradient (GPa/m)'); 
colorbar; view(45, 30); lighting gouraud; camlight; 
% Plot contact area 
subplot(3,2,6) 
contact_threshold = max(pressures) * 0.05; 
contact_area = pressures > contact_threshold; 
contourf(X*1000, Y*1000, contact_area); 
title('Contact Area'); 
xlabel('X (mm)'); ylabel('Y (mm)'); 
colormap(gca, [1 1 1; 0 0.4470 0.7410]); 
colorbar('Ticks', [0.25, 0.75], 'TickLabels', {'No Contact', 'Contact'}); 
% Print analysis 
fprintf('\nAnalysis Results for %s:\n', upper(objectType)); 
fprintf('Material Properties:\n'); 
fprintf('- Young''s Modulus: %.2e Pa\n', params.E); 
fprintf('- Poisson''s Ratio: %.2f\n', params.nu); 
fprintf('\nDeformation Metrics:\n'); 
fprintf('- Maximum Displacement: %.2f mm\n', max(displacements(:))*1000); 
fprintf('- Maximum Pressure: %.2f MPa\n', max(pressures(:))/1e6); 



   
 

   
 

fprintf('- Maximum von Mises Stress: %.2f MPa\n', max(vonMises(:))/1e6); 
fprintf('- Maximum Strain Energy Density: %.2f kJ/m³\n', max(strainEnergy(:))/1e3); 
fprintf('- Contact Area: %.2f mm²\n', sum(contact_area(:)) * (X(1,2)-X(1,1))*1000 * 

(Y(2,1)-Y(1,1))*1000); 
end 
 

8.1 3DMesh.py 

# First, install required packages 
!pip install trimesh plotly pandas numpy 
 
# Import required libraries 
import trimesh 
import numpy as np 
import pandas as pd 
import plotly.graph_objects as go 
from plotly.subplots import make_subplots 
from google.colab import files 
 
print("Please upload your XYZ point cloud file (Eraser_scan_1127_19_06_58.xyz)") 
uploaded = files.upload() 
 
print("\nNow please upload your OBJ mesh file (textured_output.obj)") 
uploaded_mesh = files.upload() 
 
# Read the original point cloud 
points = pd.read_csv("Eraser_scan_1127_19_06_58.xyz", header=None, names=['x', 

'y', 'z']) 
 
# Load the mesh 
mesh = trimesh.load("textured_output.obj") 
vertices = np.array(mesh.vertices) 
faces = np.array(mesh.faces) 
 
# Rotate point cloud 90 degrees clockwise around X axis 
rotation_matrix = np.array([ 
    [1, 0, 0],    # X-axis remains the same 
    [0, 0, -1],   # Y-axis becomes -Z 
    [0, 1, 0]     # Z-axis becomes Y 
]) 
 
# Apply rotation to points 
rotated_coords = points[['x', 'y', 'z']].values @ rotation_matrix.T 



   
 

   
 

points['y'], points['z'] = rotated_coords[:, 1], rotated_coords[:, 2] 
 
# Negate Y coordinates to match mesh orientation 
points['y'] = -points['y'] 
 
# Generate deformation data 
def generate_displacement(x, y, z): 
    # Center coordinates of the depression 
    x_center = 0.0 
    y_center = 0.0 
 
    # Calculate distance from center point 
    r = np.sqrt((x - x_center)**2 + (y - y_center)**2) 
 
    # Only apply displacement to points near the bottom (now in z-direction) 
    if z < -0.02: 
        # Gaussian depression with maximum 0.002 units displacement 
        displacement = -0.002 * np.exp(-(r**2)/(2 * 0.02**2)) 
    else: 
        displacement = 0.0 
 
    return displacement 
 
# Calculate displacements 
displacements = points.apply(lambda row: generate_displacement(row['x'], 

row['y'], row['z']), axis=1) 
 
# Create deformed coordinates 
points_deformed = points.copy() 
points_deformed['z'] = points_deformed['z'] + displacements  # Apply to Z after 

rotation 
 
def create_comparison_visualization(orig_points, def_points, displacements, 

mesh_vertices, mesh_faces): 
    """ 
    Create side-by-side visualization of original and deformed states with mesh 
    """ 
    # Create subplot figure with reduced spacing 
    fig = make_subplots( 
        rows=1, cols=2, 
        specs=[[{'type': 'scene'}, {'type': 'scene'}]], 
        subplot_titles=('Original State', 'Deformed State'), 
        horizontal_spacing=0.02  # Reduce space between plots (default is 0.2) 



   
 

   
 

    ) 
 
    # Add the mesh to both subplots 
    for i in range(1, 3): 
        fig.add_trace( 
            go.Mesh3d( 
                x=mesh_vertices[:, 0], 
                y=mesh_vertices[:, 1], 
                z=mesh_vertices[:, 2], 
                i=mesh_faces[:, 0], 
                j=mesh_faces[:, 1], 
                k=mesh_faces[:, 2], 
                color='lightblue', 
                opacity=0.5, 
                name="Original Mesh" 
            ), 
            row=1, col=i 
        ) 
 
    # Add original point cloud to first subplot 
    fig.add_trace( 
        go.Scatter3d( 
            x=orig_points['x'], 
            y=orig_points['y'], 
            z=orig_points['z'], 
            mode='markers', 
            marker=dict( 
                size=2, 
                color='red', 
                opacity=0.8 
            ), 
            name="Original Points" 
        ), 
        row=1, col=1 
    ) 
 
    # Add deformed point cloud to second subplot 
    fig.add_trace( 
        go.Scatter3d( 
            x=def_points['x'], 
            y=def_points['y'], 
            z=def_points['z'], 
            mode='markers', 



   
 

   
 

            marker=dict( 
                size=2, 
                color=displacements,  # Color by displacement magnitude 
                colorscale='Viridis', 
                opacity=0.8, 
                colorbar=dict( 
                    title="Displacement (mm)", 
                    x=1.0,  # Position colorbar on the right 
                    len=0.8,  # Adjust colorbar length 
                    thickness=15  # Make colorbar slightly thinner 
                ) 
            ), 
            name="Deformed Points" 
        ), 
        row=1, col=2 
    ) 
 
    # Update layout with optimized spacing 
    fig.update_layout( 
        title="Comparison of Original and Deformed States", 
        width=1800, 
        height=800, 
        showlegend=True, 
        margin=dict(l=20, r=20, t=40, b=20)  # Reduce margins around the plots 
    ) 
 
    # Set the same camera angle for both plots 
    scene_settings = dict( 
        xaxis_title="X", 
        yaxis_title="Y", 
        zaxis_title="Z", 
        aspectmode='data', 
        camera=dict( 
            eye=dict(x=1.5, y=1.5, z=1.5) 
        ) 
    ) 
 
    # Apply scene settings to both plots 
    fig.update_scenes(scene_settings) 
 
    return fig 
 
# Create and display the visualization 



   
 

   
 

fig = create_comparison_visualization(points, points_deformed, displacements, 

vertices, faces) 
fig.show() 
 
# Save deformation data to CSV if needed 
output = pd.DataFrame({ 
    'x_orig': points['x'], 
    'y_orig': points['y'], 
    'z_orig': points['z'], 
    'x_def': points_deformed['x'], 
    'y_def': points_deformed['y'], 
    'z_def': points_deformed['z'], 
    'displacement': displacements 
}) 
output.to_csv('eraser_deformation.csv', index=False) 
print("\nDeformation data saved to 'eraser_deformation.csv'") 
 

 


